目录
Softmax分类器定义训练测试感知机分类器定义训练测试本文实现两个分类器: softmax分类器和感知机分类器
Softmax分类器
Softmax分类是一种常用的多类别分类算法,它可以将输入数据映射到一个概率分布上。Softmax分类首先将输入数据通过线性变换得到一个向量,然后将向量中的每个元素进行指数函数运算,最后将指数运算结果归一化得到一个概率分布。这个概率分布可以被解释为每个类别的概率估计。
(资料图片仅供参考)
定义
定义一个softmax分类器类:
class SoftmaxClassifier(nn.Module): def __init__(self,input_size,output_size): # 调用父类的__init__()方法进行初始化 super(SoftmaxClassifier,self).__init__() # 定义一个nn.Linear对象,用于将输入特征映射到输出类别 self.linear = nn.Linear(input_size,output_size) def forward(self,x): x = self.linear(x) # 传递给线性层 return nn.functional.softmax(x,dim=1) # 得到概率分布 def compute_accuracy(self,output,labels): preds = torch.argmax(output,dim=1) # 获取每个样本的预测标签 correct = torch.sum(preds == labels).item() # 计算正确预测的数量 accuracy = correct / len(labels) # 除以总样本数得到准确率 return accuracy
如上定义三个方法:
__init__(self):构造函数,在类初始化时运行,调用父类的__init__()方法进行初始化forward(self):模型前向计算过程compute_accuracy(self):计算模型的预测准确率训练
生成训练数据:
import numpy as np # 生成随机样本(包含训练数据和测试数据) def generate_rand_samples(dot_num=100): x_p = np.random.normal(3., 1, dot_num) y_p = np.random.normal(3., 1, dot_num) y = np.zeros(dot_num) C1 = np.array([x_p, y_p, y]).T x_n = np.random.normal(7., 1, dot_num) y_n = np.random.normal(7., 1, dot_num) y = np.ones(dot_num) C2 = np.array([x_n, y_n, y]).T x_n = np.random.normal(3., 1, dot_num) y_n = np.random.normal(7., 1, dot_num) y = np.ones(dot_num)*2 C3 = np.array([x_n, y_n, y]).T x_n = np.random.normal(7, 1, dot_num) y_n = np.random.normal(3, 1, dot_num) y = np.ones(dot_num)*3 C4 = np.array([x_n, y_n, y]).T data_set = np.concatenate((C1, C2, C3, C4), axis=0) np.random.shuffle(data_set) return data_set[:,:2].astype(np.float32),data_set[:,2].astype(np.int32) X_train,y_train = generate_rand_samples() y_train[y_train == -1] = 0
设置训练前的前置参数,并初始化分类器
num_inputs = 2 # 输入维度大小 num_outputs = 4 # 输出维度大小 learning_rate = 0.01 # 学习率 num_epochs = 2000 # 训练周期数 # 归一化数据 将数据特征减去均值再除以标准差 X_train = (X_train - X_train.mean(axis=0)) / X_train.std(axis=0) y_train = y_train.astype(np.compat.long) # 创建model并初始化 model = SoftmaxClassifier(num_inputs, num_outputs) criterion = nn.CrossEntropyLoss() # 交叉熵损失 optimizer = optim.SGD(model.parameters(), lr=learning_rate) # SGD优化器
训练:
# 遍历训练周期数 for epoch in range(num_epochs): outputs = model(torch.tensor(X_train)) # 前向传递计算 loss = criterion(outputs,torch.tensor(y_train)) # 计算预测输出和真实标签之间的损失 train_accuracy = model.compute_accuracy(outputs,torch.tensor(y_train)) # 计算模型当前训练周期中准确率 optimizer.zero_grad() # 清楚优化器中梯度 loss.backward() # 计算损失对模型参数的梯度 optimizer.step() # 打印信息 if (epoch + 1) % 10 == 0: print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Accuracy: {train_accuracy:.4f}")
运行:
Epoch [1820/2000], Loss: 0.9947, Accuracy: 0.9575
Epoch [1830/2000], Loss: 0.9940, Accuracy: 0.9600
Epoch [1840/2000], Loss: 0.9932, Accuracy: 0.9600
Epoch [1850/2000], Loss: 0.9925, Accuracy: 0.9600
Epoch [1860/2000], Loss: 0.9917, Accuracy: 0.9600
....
测试
生成测试并测试:
X_test, y_test = generate_rand_samples() # 生成测试数据 X_test = (X_test- np.mean(X_test)) / np.std(X_test) # 归一化 y_test = y_test.astype(np.compat.long) predicts = model(torch.tensor(X_test)) # 获取模型输出 accuracy = model.compute_accuracy(predicts,torch.tensor(y_test)) # 计算准确度 print(f"Test Accuracy: {accuracy:.4f}")
输出:
Test Accuracy: 0.9725
绘制图像:
# 绘制图像 x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1 y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = model(torch.tensor(np.c_[xx.ravel(), yy.ravel()], dtype=torch.float32)).argmax(dim=1).numpy() Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.4) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, s=20, edgecolor="k") plt.show()
感知机分类器
实现与上述softmax分类器相似,此处实现sigmod感知机,采用sigmod作为分类函数,该函数可以将线性变换的结果映射为0到1之间的实数值,通常被用作神经网络中的激活函数
sigmoid感知机的学习算法与普通的感知机类似,也是采用随机梯度下降(SGD)的方式进行更新。不同之处在于,sigmoid感知机的输出是一个概率值,需要将其转化为类别标签。
通常使用阈值来决定输出值所属的类别,如将输出值大于0.5的样本归为正类,小于等于0.5的样本归为负类。
定义
# 感知机分类器 class PerceptronClassifier(nn.Module): def __init__(self, input_size,output_size): super(PerceptronClassifier, self).__init__() self.linear = nn.Linear(input_size,output_size) def forward(self, x): logits = self.linear(x) return torch.sigmoid(logits) def compute_accuracy(self, pred, target): pred = torch.where(pred >= 0.5, 1, -1) accuracy = (pred == target).sum().item() / target.size(0) return accuracy
给定一个输入向量(x1,x2,x3...xn),输出为y=σ(w⋅x+b)=1/(e^−(w⋅x+b))
训练
生成训练集:
def generate_rand_samples(dot_num=100): x_p = np.random.normal(3., 1, dot_num) y_p = np.random.normal(3., 1, dot_num) y = np.ones(dot_num) C1 = np.array([x_p, y_p, y]).T x_n = np.random.normal(6., 1, dot_num) y_n = np.random.normal(0., 1, dot_num) y = np.ones(dot_num)*-1 C2 = np.array([x_n, y_n, y]).T data_set = np.concatenate((C1, C2), axis=0) np.random.shuffle(data_set) return data_set[:,:2].astype(np.float32),data_set[:,2].astype(np.int32) X_train,y_train = generate_rand_samples() X_test,y_test = generate_rand_samples()
该过程与上述softmax分类器相似:
num_inputs = 2 num_outputs = 1 learning_rate = 0.01 num_epochs = 200 # 归一化数据 将数据特征减去均值再除以标准差 X_train = (X_train - X_train.mean(axis=0)) / X_train.std(axis=0) # 创建model并初始化 model = PerceptronClassifier(num_inputs, num_outputs) optimizer = optim.SGD(model.parameters(), lr=learning_rate) # SGD优化器 criterion = nn.functional.binary_cross_entropy
训练:
# 遍历训练周期数 for epoch in range(num_epochs): outputs = model(torch.tensor(X_train)) labels = torch.tensor(y_train).unsqueeze(1) loss = criterion(outputs,labels.float()) train_accuracy = model.compute_accuracy(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch + 1) % 10 == 0: print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Accuracy: {train_accuracy:.4f}")
输出:
Epoch [80/200], Loss: -0.5429, Accuracy: 0.9550
Epoch [90/200], Loss: -0.6235, Accuracy: 0.9550
Epoch [100/200], Loss: -0.7015, Accuracy: 0.9500
Epoch [110/200], Loss: -0.7773, Accuracy: 0.9400
....
测试
X_test, y_test = generate_rand_samples() # 生成测试集 X_test = (X_test - X_test.mean(axis=0)) / X_test.std(axis=0) test_inputs = torch.tensor(X_test) test_labels = torch.tensor(y_test).unsqueeze(1) with torch.no_grad(): outputs = model(test_inputs) accuracy = model.compute_accuracy(outputs, test_labels) print(f"Test Accuracy: {accuracy:.4f}")
绘图:
x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1 y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1 xx, yy = torch.meshgrid(torch.linspace(x_min, x_max, 100), torch.linspace(y_min, y_max, 100)) # 预测每个点的类别 Z = torch.argmax(model(torch.cat((xx.reshape(-1,1), yy.reshape(-1,1)), 1)), 1) Z = Z.reshape(xx.shape) # 绘制分类图 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral,alpha=0.0) # 绘制分界线 w = model.linear.weight.detach().numpy() # 权重 b = model.linear.bias.detach().numpy() # 偏置 x1 = np.linspace(x_min, x_max, 100) x2 = (-b - w[0][0]*x1) / w[0][1] plt.plot(x1, x2, "k-") # 绘制样本点 plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=plt.cm.Spectral) plt.show()
以上就是基于Pytorch实现分类器的示例详解的详细内容,更多关于Pytorch分类器的资料请关注脚本之家其它相关文章!